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Phosphinidenes have been proposed as short-lived intermediates 
in several reaction systems.1 We have reported products from 
the photodecomposition of 1 -mesitylphosphirane that are in accord 
with the formation of free mesitylphosphinidene (2) as a reactive 
intermediate.2 Product structures suggest that mesitylphosphin
idene adds to ir-bonds in a fashion similar to that for carbenes 
and silylenes.2'3 But, heeding Mathey's warning regarding the 
invocation of phosphinidene intermediates without physical 
evidence,4 it was recognized that spectroscopic studies were needed 
in order to fully establish the formation of phosphinidenes. 

Theoretical studies predict that many phosphinidenes have 
triplet ground electronic states5 and that the ground triplet state 
of arylphosphinidenes is lower in energy by more than 40 kcal/ 
mol than the lowest excited (singlet) state.6 It thus seemed likely 
that a triplet arylphosphinidene could be detected by ESR 
spectroscopy, as in the case of carbenes and nitrenes.7 While 
ESR experiments on the photolysis of proposed phosphinidene 
precursors in frozen matrices have been reported previously,8 the 
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detection by ESR of a triplet phosphinidene was not achieved. 
We report here the observation of triplet mesitylphosphinidene. 

<ra/w-2,3-Dimethyl-l-mesitylphosphirane(l) was synthesized 
from MesPH2

9 and (±)-2,3-butanediol ditosylate10 in 52% yield 
as shown in Scheme I.11 

Compound 1 was found to decompose more easily and cleanly 
than the previously reported 1-mesitylphosphirane.2 Room 
temperature photolysis of compound 1 in the presence of 3-hexyne 
gave a 64% yield of 2,3-diethyl-l-mesitylphosphirene (4)12 

(Scheme 2). 
When frozen solutions of compound 1 (0.01-0.1 M) in 

methylcydohexane were irradiated at 77 K with a 254 nm light 
source, the methylcydohexane glass became yellow. After 
thawing, trimesitylcyclotriphosphine (3) was observed in 30% 
yield in the absence of trapping agent;13 in the presence of 
3-hexyne, 2,3-dimethyl-l-mesitylphosphirene (4) was formed in 
yields of 22-80% based on the initial amount of compound 1. The 
formation of these products strongly suggests that mesitylphos
phinidene (2) was formed in the matrix. 

A methylcydohexane solution of compound 1 (0.1 M, 0.6 mL) 
was placed in a quartz ESR tube, degassed, and sealed. This 
mixture was cooled to 77 K, and the resulting organic glass was 
irradiated for 25 min at 254 nm (88 W). Upon irradiation, the 
matrix became yellow. The frozen tube was quickly transferred 
to the ESR cavity in a liquid helium cryostat. A Varian E-112 
high-field ESR spectrometer (X-band, 9.045 85 GHz)14 was 
employed in the measurements. With the sample at a temperature 
of 4 K, the magnetic field was scanned over the range of 600-
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Figure 1. ESR spectrum of mesitylphosphinidene. 

15 000 G to search for signals. We observed a signal at 3251 G 
(free radical) and another very strong and broad signal at 11 492 
G (Figure 1). We assign the ultrahigh resonance field to the 
triplet state of mesitylphosphinidene. 

The spin Hamiltonian for a triplet state is given as 

Hifin = PBtgS + D[S2
2 - S(S + l)/3] + E[Sx

2 - S2] 

where the first term is the electronic Zeeman interaction and D 
and£ are the zero-field splittings (ZFS) of the triplet state. The 
11 492 G signal must arise from the (x,y) canonical orientation 
(perpendicular to the P-C bond). This is a prominent absorption 
peak. The observed ultrahigh resonance field (about 4 times 
greater than the resonance field for a free electron) implies a very 
large D value. 

Assuming that the free electron g-value and E both equal 0 
(similar to phenylnitrene), the D value can be evaluated from the 
resonance field of the perpendicular (x,y) orientation by the 
following equation, 

hw =-D'± [D'2 + O2]^2 

where to is the microwave frequency, & = xj^D\, a - gj8B0, and 
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B0 is the observed resonance field. We obtain 3.521 cnr1 for the 
\D/ hc\ value. The signal due to the canonical z orientation would 
be much weaker and would lie around 35 000 G, which is beyond 
thelimitofthe available magnetic field of an X-band spectrometer. 

It should be noted that the \D/ hc\ value for mesitylphosphinidene 
is much larger than those for phenylnitrenes («1 cm-1) and 
phenylcarbenes («0.5 cnr1)'7 Two factors could contribute to 
the observed large ZFS: spin dipolar interaction between the 
two unpaired electrons and second-order spin-orbit coupling. The 
smaller the spatial separation of the two unpaired electrons, the 
greater the ZFS. To account for the observed value of \D/hc\ in 
this case, however, the unpaired electrons would have to be 
unreasonably close. The second-order spin-orbit contribution is 
likely to be dominant,15 especially when the heavy atom effect 
is recognized: the spin-orbit coupling constant of a phosphorus 
atom is about 16 times that of nitrogen. Even for a singlet-
triplet splitting of 40 kcal/mol, a spin-orbit coupling constant of 
230 cm-1, a reasonable value,16 would give rise to the observed 
\D/hc\. 

The observed triplet mesitylphosphinidene is believed to be in 
its ground state. In a phosphinidene R-P, a lone pair of electrons 
on phosphorus can occupy an orbital that is almost pure 3s, and 
it should be energetically favorable for the other two nonbonding 
electrons to occupy different 3p orbitals. The lowest energy state 
arising from this configuration should be a triplet. 

Further work is needed to detect ESR signals from other 
transitions using a higher frequency spectrometer, such as a Q-
or K-band instrument, and to determine by other means the 
singlet-triplet energy gap for phosphinidenes. 
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